30 research outputs found

    SSWAP: A Simple Semantic Web Architecture and Protocol for semantic web services

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SSWAP (<b>S</b>imple <b>S</b>emantic <b>W</b>eb <b>A</b>rchitecture and <b>P</b>rotocol; pronounced "swap") is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP was developed as a hybrid semantic web services technology to overcome limitations found in both pure web service technologies and pure semantic web technologies.</p> <p>Results</p> <p>There are currently over 2400 resources published in SSWAP. Approximately two dozen are custom-written services for QTL (Quantitative Trait Loci) and mapping data for legumes and grasses (grains). The remaining are wrappers to Nucleic Acids Research Database and Web Server entries. As an architecture, SSWAP establishes how clients (users of data, services, and ontologies), providers (suppliers of data, services, and ontologies), and discovery servers (semantic search engines) interact to allow for the description, querying, discovery, invocation, and response of semantic web services. As a protocol, SSWAP provides the vocabulary and semantics to allow clients, providers, and discovery servers to engage in semantic web services. The protocol is based on the W3C-sanctioned first-order description logic language OWL DL. As an open source platform, a discovery server running at <url>http://sswap.info</url> (as in to "swap info") uses the description logic reasoner Pellet to integrate semantic resources. The platform hosts an interactive guide to the protocol at <url>http://sswap.info/protocol.jsp</url>, developer tools at <url>http://sswap.info/developer.jsp</url>, and a portal to third-party ontologies at <url>http://sswapmeet.sswap.info</url> (a "swap meet").</p> <p>Conclusion</p> <p>SSWAP addresses the three basic requirements of a semantic web services architecture (<it>i.e</it>., a common syntax, shared semantic, and semantic discovery) while addressing three technology limitations common in distributed service systems: <it>i.e</it>., <it>i</it>) the fatal mutability of traditional interfaces, <it>ii</it>) the rigidity and fragility of static subsumption hierarchies, and <it>iii</it>) the confounding of content, structure, and presentation. SSWAP is novel by establishing the concept of a canonical yet mutable OWL DL graph that allows data and service providers to describe their resources, to allow discovery servers to offer semantically rich search engines, to allow clients to discover and invoke those resources, and to allow providers to respond with semantically tagged data. SSWAP allows for a mix-and-match of terms from both new and legacy third-party ontologies in these graphs.</p

    The iPlant Collaborative: Cyberinfrastructure for Plant Biology

    Get PDF
    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services

    Sarcoma classification by DNA methylation profiling

    Get PDF
    Sarcomas are malignant soft tissue and bone tumours affecting adults, adolescents and children. They represent a morphologically heterogeneous class of tumours and some entities lack defining histopathological features. Therefore, the diagnosis of sarcomas is burdened with a high inter-observer variability and misclassification rate. Here, we demonstrate classification of soft tissue and bone tumours using a machine learning classifier algorithm based on array-generated DNA methylation data. This sarcoma classifier is trained using a dataset of 1077 methylation profiles from comprehensively pre-characterized cases comprising 62 tumour methylation classes constituting a broad range of soft tissue and bone sarcoma subtypes across the entire age spectrum. The performance is validated in a cohort of 428 sarcomatous tumours, of which 322 cases were classified by the sarcoma classifier. Our results demonstrate the potential of the DNA methylation-based sarcoma classification for research and future diagnostic applications

    Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty

    Get PDF
    This study explores how researchers’ analytical choices affect the reliability of scientific findings. Most discussions of reliability problems in science focus on systematic biases. We broaden the lens to emphasize the idiosyncrasy of conscious and unconscious decisions that researchers make during data analysis. We coordinated 161 researchers in 73 research teams and observed their research decisions as they used the same data to independently test the same prominent social science hypothesis: that greater immigration reduces support for social policies among the public. In this typical case of social science research, research teams reported both widely diverging numerical findings and substantive conclusions despite identical start conditions. Researchers’ expertise, prior beliefs, and expectations barely predict the wide variation in research outcomes. More than 95% of the total variance in numerical results remains unexplained even after qualitative coding of all identifiable decisions in each team’s workflow. This reveals a universe of uncertainty that remains hidden when considering a single study in isolation. The idiosyncratic nature of how researchers’ results and conclusions varied is a previously underappreciated explanation for why many scientific hypotheses remain contested. These results call for greater epistemic humility and clarity in reporting scientific findings

    The Crowdsourced Replication Initiative: Investigating Immigration and Social Policy Preferences. Executive Report.

    Get PDF
    In an era of mass migration, social scientists, populist parties and social movements raise concerns over the future of immigration-destination societies. What impacts does this have on policy and social solidarity? Comparative cross-national research, relying mostly on secondary data, has findings in different directions. There is a threat of selective model reporting and lack of replicability. The heterogeneity of countries obscures attempts to clearly define data-generating models. P-hacking and HARKing lurk among standard research practices in this area.This project employs crowdsourcing to address these issues. It draws on replication, deliberation, meta-analysis and harnessing the power of many minds at once. The Crowdsourced Replication Initiative carries two main goals, (a) to better investigate the linkage between immigration and social policy preferences across countries, and (b) to develop crowdsourcing as a social science method. The Executive Report provides short reviews of the area of social policy preferences and immigration, and the methods and impetus behind crowdsourcing plus a description of the entire project. Three main areas of findings will appear in three papers, that are registered as PAPs or in process

    SSWAP: Enabling Transaction-Time Reasoning for Semantic Workflows

    No full text

    On the evolution of recombination and meiosis

    No full text
    corecore